Analogical Dissimilarity: Definition, Algorithms and Two Experiments in Machine Learning

نویسندگان

  • Laurent Miclet
  • Sabri Bayoudh
  • Arnaud Delhay
چکیده

This paper defines the notion of analogical dissimilarity between four objects, with a special focus on objects structured as sequences. Firstly, it studies the case where the four objects have a null analogical dissimilarity, i.e. are in analogical proportion. Secondly, when one of these objects is unknown, it gives algorithms to compute it. Thirdly, it tackles the problem of defining analogical dissimilarity, which is a measure of how far four objects are from being in analogical proportion. In particular, when objects are sequences, it gives a definition and an algorithm based on an optimal alignment of the four sequences. It gives also learning algorithms, i.e. methods to find the triple of objects in a learning sample which has the least analogical dissimilarity with a given object. Two practical experiments are described: the first is a classification problem on benchmarks of binary and nominal data, the second shows how the generation of sequences by solving analogical equations enables a handwritten character recognition system to rapidly be adapted to a new writer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

Extending k-Representative Clustering Algorithm with an Information Theoretic-based Dissimilarity Measure for Categorical Objects

This paper aims at introducing a new dissimilarity measure for categorical objects into an extension of k-representative algorithm for clustering categorical data. Basically, the proposed dissimilarity measure is based on an information theoretic definition of similarity introduced by Lin [15] that considers the amount of information of two values in the domain set. In order to demonstrate the ...

متن کامل

Formal Models of Analogical Proportions

Formal Models of Analogical Proportions Natural Language Processing (NLP) applications rely, in an increasing number of operational contexts, on machine learning mechanisms which are able to extract, in an entirely automated manner, linguistic regularities from annotated corpora. Among these, analogical learning is characterized by the systematic exploitation, in a symbolic machine learning app...

متن کامل

A Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources

The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...

متن کامل

Two meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2008